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Abstract
The biological fingerprint of environmental adversity may be key to understanding health and disease, as it encompasses the
damage induced as well as the compensatory reactions of the organism. Metabolic and hormonal changes may be an
informative but incomplete window into the underlying biology. We endeavored to identify objective blood gene expression
biomarkers for psychological stress, a subjective sensation with biological roots. To quantify the stress perception at a
particular moment in time, we used a simple visual analog scale for life stress in psychiatric patients, a high-risk group.
Then, using a stepwise discovery, prioritization, validation, and testing in independent cohort design, we were successful in
identifying gene expression biomarkers that were predictive of high-stress states and of future psychiatric hospitalizations
related to stress, more so when personalized by gender and diagnosis. One of the top biomarkers that survived discovery,
prioritization, validation, and testing was FKBP5, a well-known gene involved in stress response, which serves as a de facto
reassuring positive control. We also compared our biomarker findings with telomere length (TL), another well-established
biological marker of psychological stress and show that newly identified predictive biomarkers such as NUB1, APOL3,
MAD1L1, or NKTR are comparable or better state or trait predictors of stress than TL or FKBP5. Over half of the top
predictive biomarkers for stress also had prior evidence of involvement in suicide, and the majority of them had evidence in
other psychiatric disorders, providing a molecular underpinning for the effects of stress in those disorders. Some of the
biomarkers are targets of existing drugs, of potential utility in patient stratification, and pharmacogenomics approaches.
Based on our studies and analyses, the biomarkers with the best overall convergent functional evidence (CFE) for
involvement in stress were FKBP5, DDX6, B2M, LAIR1, RTN4, and NUB1. Moreover, the biomarker gene expression
signatures yielded leads for possible new drug candidates and natural compounds upon bioinformatics drug repurposing
analyses, such as calcium folinate and betulin. Our work may lead to improved diagnosis and treatment for stress disorders
such as PTSD, that result in decreased quality of life and adverse outcomes, including addictions, violence, and suicide.

Introduction

“The conflict between the will to deny horrible events
and the will to proclaim them aloud is the central
dialectic of psychological trauma.”

― Judith Lewis Herman

Stress disorders, such as post-traumatic stress disorder
(PTSD), are prevalent, disabling, and underdiagnosed in both
the military and civilian realm [1–3]. Stress disorders consist
of mental and physical over-reaction to environmental cues
that are perceived as potentially harmful, engendered by past
exposure to traumatic events. The persistence, intensity, dis-
congruence from the environment, or congruence with
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excessive response are all hallmarks of clinical illness. Stress
disorders affect one’s ability to do things and quality of life.
Owing to stigma and lack of objective tests, they are often
underdiagnosed, sub-optimally treated, and can lead to self-
medication with alcohol and drugs. They may culminate in
some cases with violence and suicide. Psychiatric patients may
have an increased vulnerability to stress, regardless of their
primary diagnosis, as well as increased reasons for stress
disorders, due to their often adverse life trajectory. As such,
they may be a particularly suitable population in which to try
to identify blood biomarkers for stress that are generalizable
and trans-diagnostic.

First, we used a powerful longitudinal within-subject
design in individuals with psychiatric disorders to discover
blood gene expression changes between self-reported low-
and high-stress states. Second, we prioritized the list of
candidate biomarkers with a Convergent Functional Geno-
mics (CFG) approach, comprehensively integrating previous
published human and animal model evidence in the field and
directly citing it. Third, we validated our top biomarkers from
discovery and prioritization in an independent cohort of
psychiatric subjects with high scores on a clinical stress rat-
ing scale. Fourth, we tested whether the candidate biomarkers
from the first three steps are able to predict high-stress state,
and future psychiatric hospitalizations with stress, in another
independent cohort of psychiatric subjects. We tested the
biomarkers in all subjects in the independent test cohort, as
well as in a more personalized fashion by gender and psy-
chiatric diagnosis, showing increased accuracy with the
personalized approach. Fifth, we assessed whether our bio-
markers have evidence for involvement in other psychiatric
and related disorders, as well as analyzed the biological
pathways and networks they are involved in. Sixth, we
identified which of our biomarkers are targets of existing
drugs and thus can be used for pharmacogenomic population
stratification and measuring of response to treatment. We also
used the gene expression signatures of the top predictive
biomarkers to interrogate the Connectivity Map database
from Broad/MIT to identify drugs and natural compounds
that can be repurposed for treating stress. Given the negative
impact of untreated stress on quality (and quantity) of life, the
current lack of objective measures to determine appro-
priateness of treatment, and the mixed results with existing
medications, the importance of approaches such as ours
cannot be overstated.

Materials and methods

Cohorts

We used three independent cohorts: discovery (major
psychiatric disorders with changes in state stress), validation

(major psychiatric disorders with clinically severe trait and
state stress), and testing (an independent major psychiatric
disorders cohort for predicting state stress and for predicting
trait future hospitalization visits with stress as the primary
reason) (Fig. 1a).

Similar to our previous studies [4–6], the psychiatric sub-
jects are part of a larger longitudinal cohort of adults that we
are continuously collecting. Subjects were recruited from the
patient population at the Indianapolis VA Medical Center. All
subjects understood and signed informed consent forms
detailing the research goals, procedure, caveats, and safe-
guards, per Institutional Review Board-approved protocol.
Subjects completed diagnostic assessments by an extensive
structured clinical interview—Diagnostic Interview for
Genetic Studies—and up to six testing visits, 3–6 months
apart or whenever a new psychiatric hospitalization occurred.
At each testing visit, they received a series of rating scales,
including a self-report visual analog scale (1–100) for quan-
titatively assessing state stress at that particular moment in
time (Simplified Stress Scale), which has 4 items (Life Stress,
Financial Stress, Health Stress, and Social Stress). We also
administered the PTSD Checklist—Civilian Version (PCL-C)
scale, which measures clinical severity of trait stress symp-
toms over the month preceding testing. We collected whole
blood (10 ml) in two RNA-stabilizing PAXgene tubes,
labeled with an anonymized ID number, and stored at −80 °C
in a locked freezer until the time of future processing. Whole-
blood RNA was extracted for microarray gene expression
studies from the PAXgene tubes, as detailed below.

For this study, our within-subject discovery cohort, from
which the biomarker data were derived, consisted of
36 subjects (28 males, 8 females) with multiple testing
visits, who each had at least one diametric change in stress
state from low-stress state (visual analog scale (VAS) Life
Stress score of ≤33/100) to a high-stress state (Life Stress
score of ≥67/100), or vice versa, from one testing visit to
another. We also required that at least one of the other items
(Health Stress, Financial Stress, or Social Stress) must have
concording low or high score with the Life Stress ((Fig. 1
and Figure S1). There were 5 subjects with 4 visits each,
9 subjects with 3 visits each, and 22 subjects with 2 visits
each resulting in a total of 91 blood samples for subsequent
gene expression microarray studies (Fig. 1, Table 1 and S1).

Our independent validation cohort, in which the top
biomarker findings were validated for being even more
strongly changed in expression compared to our discovery
cohort, consisted of 35 male and 13 female subjects with
both high trait stress (PTSD PCL-C scale scores ≥50,
indicating clinically severe stress) and high state stress
(VAS Life Stress score of ≥67/100) (Table 1).

Our independent test cohort for predicting state high
stress consisted of 95 male and 27 female subjects with
psychiatric disorders, demographically matched with the
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discovery cohort, with one or multiple testing visits in our
laboratory, with either Low Stress, Intermediate Stress, or
High Stress (Fig. 1 and Table 1).

Our test cohort for predicting trait future hospitalization
visits with stress symptoms, in the first year of follow-up,
and all future hospitalization visits with stress symptoms

Fig. 1 Steps 1–3: Discovery, prioritization and validation. a Cohorts
used in study, depicting flow of discovery, prioritization, and valida-
tion of biomarkers from each step. b Discovery cohort longitudinal
within-subject analysis. Phchp### is study ID for each subject. V#
denotes visit number. c Discovery of possible subtypes of stress based
on High Stress visits in the discovery cohort. Subjects were clustered
using measures of mood and anxiety (from Simplified Affective State
Scale (SASS)) [7], as well as psychosis (PANNS Positive). d Differ-
ential gene expression in the Discovery cohort—number of genes
identified with differential expression (DE) and absent–present (AP)
methods with an internal score of ≥2. Red—increased in expression in
High Stress, blue—decreased in expression in High Stress. At the
discovery step, probesets are identified based on their score for
tracking stress with a maximum of internal points of 6 (33% (2 pt),
50% (4 pt) and 80% (6 pt)). e Prioritization with Convergent

Functional Genomics (CFG) for prior evidence of involvement in
stress. In the prioritization step, probesets are converted to their
associated genes using Affymetrix annotation and GeneCards. Genes
are prioritized and scored using CFG for stress evidence with a
maximum of 12 external points. Genes scoring at least 6 points out of a
maximum possible of 18 total internal and external scores points are
carried to the validation step. f Validation in an independent cohort of
psychiatric patients with clinically severe trait stress and high-state
stress. In the validation step, biomarkers are assessed for stepwise
change from the discovery groups of subjects with Low Stress, to High
Stress, to Clinically Severe Stress, using analysis of variance. N=
number of testing visits. Two hundred and thirty-two biomarkers were
nominally significant, NUB1 and ASCC1 were the most significant
increased and decreased biomarkers, respectively, and 1130 bio-
markers were stepwise changed

Towards precision medicine for stress disorders: diagnostic biomarkers and targeted drugs



(Fig. 1) consisted of 166 males and 20 female subjects for
which we had longitudinal follow-up with electronic med-
ical records. The subjects’ subsequent number of hospita-
lization with stress symptoms in the year following testing
was tabulated from electronic medical records by a clinical
researcher, who examined admission and discharge
summaries.

Medications

The subjects in the discovery cohort were all diagnosed
with various psychiatric disorders (Table 1) and had various
medical co-morbidities. Their medications were listed in
their electronic medical records and documented by us at
the time of each testing visit. Medications can have a strong
influence on gene expression. However, our discovery of
differentially expressed genes was based on within-subject
analyses, which factor out not only genetic background
effects but also minimizes medication effects, as the sub-
jects rarely had major medication changes between visits.
Moreover, there was no consistent pattern of any particular
type of medication, as our subjects were on a wide variety
of different medications, psychiatric and non-psychiatric.
Furthermore, the independent validation and testing cohort
gene expression data was Z-scored by gender and diagnosis

before being combined, to normalize for any such effects.
Some subjects may be non-compliant with their treatment
and may thus have changes in medications or drug of abuse
not reflected in their medical records. That being said, our
goal is to find biomarkers that track stress, regardless if the
reason for it is endogenous biology or driven by substance
abuse or medication non-compliance. In fact, one would
expect some of these biomarkers to be direct or indirect
targets of medications, as we show in this paper. Overall,
the discovery, validation, and replication by testing in
independent cohorts of the biomarkers, with our design,
occurs despite the subjects having different genders, diag-
noses, being on various different medications, and other
lifestyle variables.

Blood gene expression experiments

RNA extraction

Whole blood (2.5 ml) was collected into each PaxGene
tube by routine venipuncture. PaxGene tubes contain
proprietary reagents for the stabilization of RNA. RNA
was extracted and processed as previously described,
including standard globin clear and RNA quality assess-
ment steps [4–6].

Table 1 Aggregate demographics

Cohorts Number of
subjects

Gender Diagnosis Ethnicity Age at the time of visit,
mean (SD)

T test for age

Discovery

Discovery cohort (within-subject changes in life stress VAS)
Low life stress VAS ≤ 33 to high life stress VAS ≥ 67
Concordance with 1 other item (health stress, financial
stress, social stress)

36 (with 91
visits)

Male= 28
Female= 8

BP 14 (38)
MDD 7 (15)
PSYCH 1 (3)
PTSD 6 (16)
SZ 6 (14)
SZA 2 (5)

EA= 25
AA= 10
Hispanic= 1

All= 49.8022 (10.3754)
Low stress= 50.31
High stress= 49.30

Validation

Independent validation cohort (clinically severe stress PCL-
C ≥ 50; life stress VAS ≥ 67)

48 (75 visits) Male= 35
Female= 13

MDD= 13
BP= 8
SZ= 2
SZA= 7
PTSD= 13
MOOD= 4

EA= 37
AA= 10

48.96 (8.4) Discovery vs. validation
0.56523437

Testing

Independent testing cohort for predicting state (high stress
state life stress VAS ≥ 67 at the time of assessment)

122 (258 visits) Male= 95
Female= 27

BP= 53
MDD= 24
SZA= 15
SZ= 17
PTSD= 9
MOOD= 1
PSYCH= 3

EA= 89
AA= 31
Mixed= 1
Hispanic= 1

All= 45.5 (9.93)
Others= 46.2
High Stress= 44.03

High stress (n= 38) vs.
others (N= 220) 0.50720396

Independent testing cohort for predicting trait (future
hospitalizations with stress in the first year following
assessment)

162 (398 visits) Male= 144
Female= 18

BP= 50
MDD= 27
SZA= 32
SZ= 39
PTSD= 8
MOOD= 3
PSYCH= 8

EA= 101
AA= 58
Mixed= 1
Hispanic= 2

All= 50.4 (8.19)
Others= 48.6
Hosp with stress= 47.9

Hosp with stress (n= 32) vs.
others (n= 366) 0.7001408

Independent testing cohort for predicting trait (future
hospitalizations with stress in all years following
assessment)

186 (474 visits) Male= 166
Female= 20

BP= 56
MDD= 30
SZA= 47
SZ= 39
PTSD= 8
MOOD= 3
PSYCH= 3

EA= 119
AA= 64
Mixed= 1
Hispanic= 2

All= 50.45 (8.86)
Others= 50.55
Hosp with Stress= 50.12

Hosp with stress (n= 113)
vs. others (n= 361)
0.65942853

BP bipolar, MDD depression, MOOD mood nos., SZ schizophrenia, SZA schizoaffective, PSYCH psychosis nos., PCL-C PTSD Checklist—
Civilian Version, PTSD post-traumatic stress disorder, VAS visual analog scale, EA European Americans, AA African Americans
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Microarrays

Microarray work was carried out using previously described
methodology [4–7]. The dataset is available at GEO
(GSE125216).

Telomere length (TL)

Blood was collected in EDTA blood tubes and kept at −80 °
C until the time of extraction. DNA was extracted using the
DNeasy Blood & Tissue Kit (Qiagen) and DNA concentra-
tion was assessed using Qubit (ThermoFisher Scientific) as
per the manufacturer’s protocols. TL was determined using a
relative quantitative real-time PCR method [8]. Two assays
were carried out, one for the Human albumin gene (ALB),
which is a single copy gene, and the other assay with primers
specific to the repetitive telomeric (TEL) sequence. The
primers used to amplify the single copy gene are: ALBF
(CTG TCA TCT CTT GTG GGC TGT) and ALBR (GGC
ATG ACA GGT TTT GCA ATA) and those for the telo-
meric sequence are: TEL1b (CGG TTT GTT TGG GTT
TGG GTT TGG GTT TGG GTT TGG GTT) and TEL2b
(GGC TTG CCT TAC CCT TAC CCT TAC CCT TAC
CCT TAC CCT). A ratio of the relative quantities (TEL/
ALB) was used as a quantitative measure of TL. Each sample
was run in triplicate and an average of the cycle thresholds
was used to calculate telomere/single copy gene (T/S) ratios.

Biomarkers

Step 1: Discovery

We used the subject’s score from a VAS Life Stress,
assessed at the time of blood collection (Figure S1). We
analyzed gene expression differences between visits with
Low Stress (defined as a score of 0–33) and visits with High
Stress (defined as a score of 67–100) (Fig. 1 and S1).

We analyzed the data in two ways: an absent–present
(AP) approach, and a differential expression (DE) approach,
as in previous work by us on suicide biomarkers [4–6]. The
AP approach may capture turning on and off of genes, and
the DE approach may capture gradual changes in expression.
We used a powerful within-subject design, then an across-
subjects summation score for probesets. Analyses were
performed as previously described [5–7]. In brief, we
imported all Affymetrix microarray data as CEL. files into
Partek Genomic Suites 6.6 software package (Partek Incor-
porated, St Louis, MI, USA). Using only the perfect match
values, we ran a robust multi-array analysis (RMA) by
gender and diagnosis, background corrected with quantile
normalization and a median polish probeset summarization
of all chips, to obtain the normalized expression levels of all
probesets for each chip. Then, to establish a list of

differentially expressed probesets we conducted a within-
subject analysis, using a fold change in expression of at least
1.2 between high- and low-stress visits within each subject.
Probesets that have a 1.2-fold change are then assigned
either a 1 (increased in high stress) or a −1 (decreased in
high stress) in each comparison. These values were then
summed for each probeset across all the comparisons and
subjects, yielding a range of raw scores. The probesets above
the 33.3% of scores received an internal score of 2 points,
those >50% 4 points, and those >80% 6 points [5–7]. We
have developed in our laboratories R scripts to automate and
conduct all these large dataset analyses in bulk, checked
against human manual scoring [7].

Gene Symbol for the probesets were identified using
NetAffyx (Affymetrix) for Affymetrix HG-U133 Plus 2.0
GeneChips, followed by GeneCards to confirm the primary
gene symbol. In addition, for those probesets that were not
assigned a gene symbol by NetAffyx, we used GeneAnnot
(https://genecards.weizmann.ac.il/geneannot/index.shtml)
or UCSC (https://genome.ucsc.edu) to obtain gene symbol
for these uncharacterized probesets, followed by GeneCard.
Genes were then scored using our manually curated CFG
databases as described below (Fig. 1e).

Step 2: Prioritization using CFG databases

We have established in our laboratory (Laboratory of Neu-
rophenomics, www.neurophenomics.info) manually curated
databases of the human gene expression/protein expression
studies (postmortem brain, peripheral tissue/fluids: cere-
brospinal fluid, blood, and cell cultures), human genetic stu-
dies (association, copy number variations, and linkage), and
animal model gene expression and genetic studies, published
to date on psychiatric disorders. Only findings deemed sig-
nificant in the primary publication, by the study authors, using
their particular experimental design and thresholds, are
included in our databases. Our databases include only primary
literature data and do not include review papers or other
secondary data integration analyses to avoid redundancy and
circularity. These large and constantly updated databases have
been used in our CFG cross-validation and prioritization
platform (Fig. 1e). For this study, data from 354 papers on
stress were present in the databases at the time of the CFG
analyses (February 2018) (human genetic studies—93, human
brain studies—10, human peripheral tissue/fluids—96, non-
human genetic studies—17, non-human brain studies—123,
non-human peripheral tissue/fluids—17). Analyses were per-
formed as previously described [5, 6].

Step 3: Validation analyses

We examined which of the top candidate genes (total CFG
score of ≥6) were stepwise changed in expression from the
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Low Stress Discovery group to the High Stress Discovery
group to the Clinically Severe Stress Validation group. A
CFG score of ≥6 reflects an empirical cutoff of 33.3% of the
maximum possible total CFG score of 18, which permits the
inclusion of potentially novel genes with maximal internal
score of 6 but no external evidence score. Subjects with
Low Stress as well as subjects with High Stress from the
discovery cohort who did not have severe clinical stress
(PCL-C < 50) were used, along with the independent vali-
dation cohort (n= 48 subjects).

The AP- and DE-derived lists of genes were combined,
and the gene expression data corresponding to them was
used for the validation analysis. The cohorts (Validation
Clinically Severe Stress, alongside the Low Stress and High
Stress groups in the Discovery cohort) were assembled out
of Affymetrix.cel data that was RMA normalized by gender
and diagnosis. We transferred the log-transformed expres-
sion data to an Excel sheet, and non-log transformed the
data by taking 2 to the power of the transformed expression
value. We then Z-scored the values by gender and diag-
nosis. We then imported the Excel sheets with the Z-scored
by gender and diagnosis expression data into Partek, and
statistical analyses were performed using a one-way ana-
lysis of variance (ANOVA) for the stepwise changed pro-
besets and also attempted a stringent Bonferroni corrections
for all the probesets tested (Fig. 1f). We also wrote an R
script that automatically analyzes the data directly from the
Excel sheet and used that to confirm our calculations.

Biomarkers carried forward

We carried forward into testing the top biomarkers from
each of the Steps 1–3. The list of candidate biomarkers
includes the top biomarkers from discovery step (≥90% of
raw scores, n= 39), the top biomarkers from the prior-
itization step (CFG score ≥ 13, n= 21), and the nominally
significant biomarkers after the validation step (n= 232),
for a total of n= 285 probesets (n= 269 genes). We then
predict with the biomarkers from the list in independent
cohort state (High Life Stress VAS ≥ 67/100), and trait
(Future Hospitalizations with Stress), in the first year of
follow-up, and in all future years of follow-up.

Diagnostics

In Step 4, testing, the test cohort for predicting High Stress
(state) and the test cohort for predicting Future Hospitali-
zations with Stress (trait), were assembled out of data that
was RMA normalized by gender and diagnosis. The cohort
was completely independent from the discovery and vali-
dation cohorts; there was no subject overlap with them.
Phenomic (clinical) and gene expression markers used for
predictions were Z-scored by gender and diagnosis, to be

able to combine different markers into panels and to avoid
potential artifacts due to different ranges of expression in
different gender and diagnoses. Markers were combined
by simple summation of the increased risk markers minus
the decreased risk markers. Predictions were performed
using R-studio. For cross-sectional analyses, we used
marker expression levels, Z-scored by gender and diag-
nosis. For longitudinal analyses, we combined four mea-
sures: marker expression levels, slope (defined as ratio of
levels at current testing visit vs. previous visit, divided
by time between visits), maximum levels (at any of the
current or past visits), and maximum slope (between any
adjacent current or past visits). For decreased markers, we
used the minimum rather than the maximum for level
calculations. All four measures were Z-scored, then com-
bined in an additive fashion into a single measure. The
longitudinal analysis was carried out in a sub-cohort of the
testing cohort consisting of subjects that had at least two
test visits.

Predicting state: high stress

Receiver-operating characteristic (ROC) analyses between
marker levels and stress state were performed by assigning
subjects visits with a Life Stress VAS score of ≥67 into
the High Stress category. We used the pROC package
of R [9] (Table 2, Fig. 2). Additionally, a one-tailed t test
was performed between High Stress group vs. the rest, and
Pearson R (one-tail) was calculated between Life Stress
VAS scores and marker levels (Supplementary Information-
Complete Datasets and Analyses).

Predicting trait: future psychiatric hospitalization with
stress as a symptom/reason for admission

We conducted analyses for predicting future psychiatric
hospitalizations with stress as a symptom/reason for
admission in the first year following each testing visit in
subjects who had at least 1 year of follow-up in the VA
system, in which we have access to complete electronic
medical records. ROC analyses between genomic and phe-
nomic marker measures (cross-sectional, longitudinal) at a
specific testing visit and future hospitalization were per-
formed as described above, based on assigning if subjects
had been admitted to the hospital due to stress or not.
Additionally, a one tailed t test with unequal variance was
performed between groups of subject visits with and without
future hospitalization with stress. Pearson R (one-tail) cor-
relation was performed between hospitalization frequency
(number of hospitalizations with stress divided by duration
of follow-up) and marker levels. A Cox regression was
performed using the time in days from the testing visit date
to first hospitalization date in the case of patients who had
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been hospitalized or 365 days for those who did not. The
hazard ratio was calculated such that a value >1 always
indicates increased risk for hospitalization, regardless if the
biomarker is increased or decreased in expression.

We also conducted a Cox regression and Pearson cor-
relation analyses for all future hospitalizations with stress,
including those occurring beyond 1 year of follow-up, in the
years following testing (on average 5.76 years per subject,

range 0.07–11.27 years), as these calculations, unlike the
ROC and t test, account for the actual length of follow-up,
which varied from subject to subject. The ROC and t test
might in fact, if used, under-represent the power of the
markers to predict, as the more severe psychiatric patients
are more likely to move geographically and/or be lost to
follow-up. The Cox regression was performed using the
time in days from visit date to first hospitalization date in
the case of patients who had hospitalizations with stress or
from visit date to last note date in the electronic medical
records for those who did not.

Biological understanding

Pathway analyses

IPA (Ingenuity Pathway Analysis, version 24390178, Qia-
gen), David Functional Annotation Bioinformatics Micro-
array Analysis (National Institute of Allergy and Infectious
Diseases) version 6.7 (August 2016), and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) (through DAVID)
were used to analyze the biological roles, including top
canonical pathways and diseases (Table 3), of the candidate
genes resulting from our work. We ran the pathway ana-
lyses for the combined 220 unique genes (232 probesets)
that were nominally significant after validation. For Net-
work analysis of the 220 unique genes, we performed
STRING Interaction Network (https://string-db.org) by
inputting the genes into the search window and performed
Multiple Proteins Homo sapiens analysis.

CFG beyond Stress: evidence for involvement in other
psychiatric and related disorders

We also used a CFG approach to examine evidence from
other psychiatric and related disorders, for the list of top
predictive biomarkers after Step 4 testing (n= 41) (Table S3).

Fig. 2 Best predictive biomarkers. From among top candidate bio-
markers (n= 285) from Steps 1–3 (Discovery—39, Prioritization—21,
Validation—232 bolded). Bar graph shows best predictive biomarkers
in each group. *Nominally significant for predictions p < 0.05.
**Bonferroni significant for the 285 biomarkers tested. Table under-
neath the figures displays the actual number of biomarkers for each
group whose area under the receiver-operating characteristic curve
p values (a, b) and Cox odds ratio p values (c) are at least nominally
significant. Some gender and diagnosis groups are missing from the
graph as they did not have any significant biomarkers. Cross-sectional
is based on levels at one visit. Longitudinal is based on levels at
multiple visits (integrates levels at most recent visit, maximum levels,
slope into most recent visit, and maximum slope). Dividing lines
represent the cutoffs for a test performing at chance levels (white) and
at the same level as the best biomarkers for all subjects in cross-
sectional (gray) and longitudinal (black) based predictions. All bio-
markers perform better than chance. Biomarkers performed better
when personalized by gender and diagnosis

H. Le-Niculescu et al.
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Therapeutics

Pharmacogenomics

We analyzed which of our individual top predictive bio-
markers from Fig. 2 (n= 41 genes, 42 probesets) are known
to be modulated by existing drugs using our CFG databases
and using Ingenuity Drugs analyses (Table 2 and Table S4).

New drug discovery/repurposing

We also analyzed which drugs and natural compounds are
an opposite match for the gene expression profiles of panels
of our top predictive biomarkers, using the Connectivity
Map (https://portals.broadinstitute.org, Broad Institute,
MIT) (Table 4). One hundred and forty out of the nominally
validated 232 probesets from Step 3 were present in the
HGU-133A array used for the Connectivity Map. Out of
these, we also compiled gene expression signatures of the
probesets that were predictive in Step 4 (nominally
significant) for all subjects, as well as separately for males
and for females, and personalized by gender and diagnosis.

Convergent Functional Evidence (CFE)

For the top predictive biomarkers (n= 42), we tabulated into
a CFE score all the evidence from discovery (up to 6 points),
prioritization (up to 12 points), validation (up to 6 points),
testing (state, trait first-year Hospitalization with Stress vis-
its, trait all future Hospitalization with Stress visits—up to 8
points each if significantly predicts in all subjects, 6 points if
predicts by gender, 4 points if predicts in gender/diagnosis),
other psychiatric and related disorders (3 points), and drug
evidence (3 points). The total score can be up to 54 points:
36 from our data and 18 from literature data. We weigh our
data twice as much as the literature data. The goal is to
highlight, based on the totality of our data and of the evi-
dence in the field to date, biomarkers that have all around
evidence: track stress, predict it, are reflective of stress and
other pathology, and are potential drug targets. Such bio-
markers merit priority evaluation in future clinical trials.

Results

Step 1: Discovery of biomarkers for stress

We used a powerful within-subject longitudinal discovery
approach to identify genes that: (1) change in expression in
blood between low stress states (Life Stress VAS ≤ 33 out of
100) and high stress states (Life Stress VAS ≥ 67 out of
100), (2) track the stress state across visits in a subject, and
(3) track stress state in multiple subjects. We used a

longitudinally followed cohort of psychiatric subjects that
showed diametric changes in stress states between at least
two testing visits (n= 36 subjects) (Fig. 1 and Table 1). The
stress state self-report may be more reliable in this cohort, as
the subjects demonstrated the aptitude and willingness to
report different, and diametric, stress states. Using our 33%
of maximum raw score threshold (internal score of 2 pts, we
had 12,884 unique probesets (Fig. 1d). These were carried
forward to the prioritization step. This represents approxi-
mately a 4-fold enrichment of the 54,625 probesets on the
Affymetrix array.

We also explored in the discovery cohort whether sub-
types of stress can be identified based on mental state at the
time of high stress visits, using two-way hierarchical
clustering with anxiety, mood, and psychosis measures. We
uncovered three potential subtypes of stress: predominantly
anxious (possibly reflecting increased reactivity), pre-
dominantly psychotic (possibly reflecting dis-connectivity),
and non-comorbid with other psychiatric symptoms
(possibly reflecting better adaptation) (Fig. 1c). These
subtypes need to be further evaluated and tested in
independent cohorts for practical utility, diagnostic and
therapeutic. Deeper analyses of the clustering in future
studies may also substantiate further parsing of the subtypes
into eight instead of only three subtypes.

Step 2: Prioritization of biomarkers based on prior
evidence in the field

We used a CFG approach to prioritize the candidate bio-
markers identified in the discovery step (33% cutoff,
internal score of ≥2 pts) by using all the published prior
independent evidence in the field (Fig. 1e). There were 3590
probesets that had a CFG score (combined internal and
external score) of ≥6. These were carried forward to the
validation step. This represents approximately a 15-fold
enrichment of the probesets on the Affymetrix array.

Step 3: Validation of biomarkers for severe stress
state and trait

Next, we validated these prioritized candidate biomarkers
(n= 3590), in a demographically matched cohort of psy-
chiatric subjects with clinically severe state and trait stress,
by assessing which markers were stepwise changed in
expression from low stress in the discovery cohort to high
stress in the discovery cohort to clinically severe in the
independent validation cohort (Fig. 1f). These genes are
likely involved in stress state and trait. Two thousand two
hundred and twenty-eight probesets were non-stepwise
changed, 1130 were stepwise changed, and 232 were
nominally significant by ANOVA. This represents
approximately a 235-fold enrichment of the probesets on

H. Le-Niculescu et al.
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the Affymetrix array. The best p value increased in
expression (risk) biomarker was NUB1 (Negative Regulator
of Ubiquitin-Like Proteins 1) (p= 0.00062), and the best p
value decreased in expression (protective) biomarker was
ASCC1 (p= 0.00028). The Bonferroni threshold was set
conservatively at 0.05/3590= 0.000014, and none of the
biomarkers crossed that threshold.

Step 4: Testing for diagnostics

We carried forward into testing the top biomarkers from
each of the first three steps. The list of candidate biomarkers
thus includes the top biomarkers from discovery step (≥90%
of scores, n= 39), the top biomarkers after the prioritization
step (total CFG score≥13, n= 21), and the nominally sig-
nificant biomarkers after the validation step (n= 232), for a

Table 4 New drug discovery/repurposing leads

A. CMAP analysis with nominally validated biomarkers (22 increased
and 118 decreased were present in HG-U133A array used by
Connectivity Map)

Rank cmap name Score

6100 cefotiam −1

6099 proguanil −0.991

6098 hydroxyachillin −0.96

6097 Prestwick-682 −0.95

6096 levopropoxyphene −0.949

6095 isoflupredone −0.943

6094 ozagrel −0.941

6093 streptozocin −0.938

6092 cyclopenthiazide −0.934

6091 metformin −0.93

6090 corticosterone −0.925

6089 calcium folinate −0.924

6088 diphenhydramine −0.921

B. CMAP analysis with biomarkers that are nominally predictive in all
(5 increased and 52 decreased were present in HG-U133A array used
by Connectivity Map)

Rank cmap name Score

6100 ambroxol −1

6099 ozagrel –0.971

6098 cefotiam −0.959

6097 xamoterol −0.951

6096 betulin −0.93

6095 isometheptene −0.927

6094 primidone −0.925

6092 tocainide −0.919

6093 diloxanide −0.919

6089 alprostadil −0.913

6090 amphotericin B −0.913

6087 oxolamine −0.909

C. CMAP analysis with biomarkers that are nominally predictive in
males (5 increased and 48 decreased were present in HG-U133A array
used by Connectivity Map)

Rank cmap name Score

6100 ozagrel −1

6099 flucloxacillin −0.981

6098 ambroxol −0.97

6097 dapsone −0.958

6096 tiaprofenic acid −0.955

6095 primidone −0.939

6094 betulin −0.936

6093 proguanil −0.929

6092 gossypol −0.925

Table 4 (continued)

C. CMAP analysis with biomarkers that are nominally predictive in
males (5 increased and 48 decreased were present in HG-U133A array
used by Connectivity Map)

Rank cmap name Score

6091 levopropoxyphene −0.92

6090 xamoterol −0.917

6089 streptozocin −0.912

6088 tocainide −0.909

D. CMAP analysis with biomarkers that are nominally predictive in
females (9 increased and 21 decreased were present in HG-U133A
array used by Connectivity Map)

rank cmap name Score

6100 flecainide −1

6099 Prestwick-682 −0.997

6098 spiramycin −0.98

6097 domperidone −0.974

6096 homatropine −0.967

6094 isoniazid −0.964

6095 proguanil −0.964

6093 phentolamine −0.958

6092 sulfamonome-
thoxine

−0.952

6091 fludrocortisone −0.951

6090 dizocilpine −0.946

6087 adiphenine −0.942

6088 tolnaftate −0.942

Connectivity Map [66] (CMAP) analysis—drugs that have opposite
gene expression profile effects to the signature of our validated genes
(A), and out of them, those that are also significant predictive
biomarkers (B–D). A score of −1 indicates the perfect opposite match,
i.e., the best potential therapeutic to decrease stress. Bold—top
candidates. Bold and italic—natural compounds of interest. Bold and
underlined—compounds known to modulate stress, which serve as
reassuring positive controls

Towards precision medicine for stress disorders: diagnostic biomarkers and targeted drugs



total of n= 285 probesets (n= 269 genes) (Fig. 1). The
rationale for that was that there might be biomarkers that did
not survive validation in our particular cohort and stringent
stepwise change in expression approach but have either an
abundance of evidence from the literature supporting their
involvement in stress and thus are highly prioritized at Step
2 and/or have strong evidence in the discovery Step 1 and
might be completely novel candidate biomarkers for stress.

We tested whether the 285 candidate biomarkers are able
to predict stress severity state, and future psychiatric hospi-
talizations with stress, in another independent cohort of
psychiatric subjects. We used biomarker levels information
cross-sectionally, as well as expanded longitudinal informa-
tion about biomarker levels at multiple visits, as predictors.
We tested the biomarkers in all subjects in the independent
test cohort, as well as in a more personalized fashion by
gender and psychiatric diagnosis, showing increased accu-
racy with the personalized approach, in particular in women
(Fig. 2). In general, the longitudinal information was more
predictive than the cross-sectional information.

Across all subjects tested, NUB1, the top risk biomarker
after validation, was also the best predictor for high stress
state (area under the ROC curve (AUC) 65%, p= 0.0014).
NUB1 was an even better predictor of stress state by gender
in females (AUC 74%, p= 0.004) and by gender and diag-
nosis in female bipolars (AUC 78%, p= 0.02). NUB1, which
was increased in expression in High Stress states in our
studies, has previous convergent evidence for increase in
expression in stress, in human brain in individuals exposed to
social isolation before dying [10] and in blood in individuals
exposed to combat traumas, as reported by Breen et al. [11].
It also has evidence for increase in expression in the brain of
mice subjected to chronic variable stress by Nestler and
colleagues [12]. Such reproducibility across studies, tissues,
and populations provides strong reasons to consider it as a
bona fide marker for psychological stress, and it serves as a
reassuring de facto positive control for the design and power
of our study. Interestingly, NUB1 is also increased in
expression in our previous blood biomarker studies of suicide
in both males [5, 4] and females [6] (Table S3). There is a
strong clinical connection between stress and suicide.

APOL3 was the best predictor for trait first-year future
hospitalizations with stress (AUC 70%, p= 0.0053).
APOL3 was an even better predictor of first-year future
hospitalizations in males (AUC 71%, p= 0.045) and by
gender and diagnosis in male depression (AUC 92%, p=
0.026). It also is a good predictor of all future hospitaliza-
tions with stress in male depression (odds ratio (OR) 9.6,
p= 0.026). APOL3 (Apolipoprotein L3), decreased in
expression in High Stress states in our studies, has previous
convergent evidence for decrease in expression in the brain
in mice subjected to stress [13]. Interestingly, APOL3 is
also decreased in expression in our previous blood

biomarker studies of suicide in both males [5] and females
[6] (Table S3).

MAD1L1 (Mitotic Arrest Deficient Like 1) the best
predictor for trait all future hospitalizations with stress (OR
1.80, p= 0.0013). MAD1L1 was an even better predictor
by gender and diagnosis in male bipolar (OR 2.1, p=
0.0097) and male depression (OR 31.4, p= 0.0055).
MAD1L1, which is decreased in expression in High Stress
states in our studies, has previous convergent evidence for
decrease in expression in blood in chronic stress [14]. Of
note, MAD1L1 has strong previous genetic and gene
expression data for involvement in autism [15], as well as in
bipolar disorder [16] and schizophrenia [17]. It may mediate
the impact of stress on those disorders.

NKTR (Natural Killer Cell Triggering Receptor) (OR 1.37,
p= 0.000095) survived Bonferroni correction for all the 285
biomarkers tested. Importantly, NKTR, increased in expres-
sion in blood in High Stress states in our studies, was also
reported increased in expression in blood in studies of social
isolation in humans [18] and in brain in studies of chronic
variable stress in mice by Nestler and colleagues [12]. NKTR
is also increased in expression in our previous blood bio-
marker studies of suicide in both males [5, 4] and females [6],
as well as increased in expression in postmortem brain studies
in depression [19] and in schizophrenia [20] (Table S3),
possibly underlying the effect of stress in those disorders.

By gender, in females, FOXK2 was the best predictor for
state (AUC 88%, p= 0.0039), PSD3 the best predictor for
trait first-year hospitalizations (AUC 98%, p= 0.011), and
C1orf123 for trait all future hospitalizations (OR 12.26, p=
0.033). In males, PCDHB6 was the best predictor for state
(AUC 65%, p= 0.0072), APOL3 the best predictor for trait
first-year hospitalizations (AUC 71%, p= 0.0045), and
MAD1L1 the best predictor for trait all future hospitaliza-
tions (OR 1.7, p= 0.0027).

Personalized by gender and diagnosis, in female bipolar
CIRBP was a strong predictor for state (AUC 100%, p=
0.016) and in female schizoaffective HLA-DRB1 for trait
all future hospitalizations (OR 39.23, p= 0.041). In male
schizophrenia, SNCA was a strong predictor for state (AUC
100%, p= 0.014), in male depression STX11 was a strong
predictor for trait first-year hospitalizations (AUC 100%, p
= 0.00047), and in male depression ANK2 was a strong
predictor for trait all future hospitalizations (OR 76.81, p=
0.0081). Owing to the smaller size of these gender and
diagnosis cohorts, these results need to be considered pre-
liminary and interpreted with caution.

TL, used as a comparator/positive control, was a good
predictor for stress state and first-year hospitalizations,
particularly in males with depression (Table 2). There is an
extensive prior literature documenting the effects of stress
on TL from Blackburn, Epel, and colleagues [21, 22], as
well as other investigators [23–25].

H. Le-Niculescu et al.



Across all subjects tested and in males, predictions of
future hospitalizations with stress were in general somewhat
stronger using phenotypic markers (such as the PTSD PCL-
C scale and the VAS Stress scale) than biomarkers, but
predictions were stronger using biomarkers than phenotypic
markers in females and personalized by gender and diag-
nosis. Also, panels of the 232 validated biomarkers did not
work as well as individual biomarkers, particularly when
the latter are tested by gender and diagnosis, consistent with
there being heterogeneity in the population and supporting
the need for personalization (Supplementary Information-
Complete Datasets and Analyses).

Step 5: Biological roles

Fifth, we assessed whether our top predictive biomarkers
have evidence for involvement in other psychiatric and
related disorders (Table 2 and S3). A majority of our bio-
markers have some evidence in other psychiatric disorders,
consistent with the broad effect of stress on the brain and on
mind domains/dimensions [26–29], whereas a few seem to
be specific for stress, such as HLA-B (Major Histo-
compatibility Complex, Class I, B), LOC105378349
(Uncharacterized LOC105378349), and STX11 (Syntaxin
11). More than half of our top predictive biomarkers (26 out
of the 41 genes, i.e., 63%) have prior evidence for invol-
vement in suicide, suggesting an extensive molecular co-
morbidity between stress and suicide, to go along with the
clinical and phenomenological co-morbidity [5–7].

We also analyzed the biological pathways and networks
our nominally validated biomarkers (n= 232 probesets 220
genes) are involved in. The top biological pathway is
involved in antigen processing and presentation (Table 3),
broadly speaking in the reaction to threats. The pathways
are shared with other non-psychiatric diseases, suggesting
that stress is a whole-body disease [30]. There is a network
centered on HLA DRB1 that may be involved in reactivity/
immune response. A second network is centered on
HDAC3 and may be involved in activity/trophicity. A third
network is centered on RAC1 and may be involved in
connectivity/signaling. ACTR1A seems to be a nodal gene
connecting these three networks (Figure S2).

Step 6: Targeted treatments and drug repurposing

Sixth, we analyzed which of our top predictive biomarkers
have evidence for being directly or indirectly modulated by
existing drugs, in the opposite direction to their change in
stress (Table 2 and Table S4), using our CFG literature
databases. Some biomarkers are modulated by omega-3
fatty acids, some by antidepressants, some by mood stabi-
lizers, some by antipsychotics, and some by other treat-
ments such as psychotherapy and meditation. This opens

avenues for future studies of pharmacogenomic stratifica-
tion of patients with, for example, PTSD, to various treat-
ments or treatment combinations and for objectively
measuring the response to treatment.

We also used the validated biomarker signature, and out
of them, the top predictive biomarkers gene expression
signatures, to interrogate the Connectivity Map database
from Broad/MIT to identify leads to potential drugs and
natural compounds that have the opposite effects on gene
expression to stress and can be repurposed for treating stress
(Table 4). The top drugs and nutraceuticals identified as
potential new stress therapeutics using the validated bio-
markers from Step 3 are cefotiam (an antibiotic) and cal-
cium folinate (a B vitamin). While primarily utilized for
their antimicrobial activity, β-lactam antibiotics like cefo-
tiam were found to promote the expression of the glutamate
transporter GLT1 and have a neuroprotective role in vivo
and in vitro when used in models of ischemic injury and
motor neuron degeneration, suggesting significant neuro-
protective properties [31]. A study investigating the effects
of cephalosporin in a mouse model of major depressive
disorder, ceftriaxone, of the cephalosporin family, was
shown to exhibit antidepressant properties increasing glu-
tamate uptake, thought to be impaired in major depressive
disorder [32]. Calcium folinate is a derivative of folate.
Folate has been implicated in neurotransmitter metabolism
and has been suggested as a therapeutic option in depression
and negative symptoms schizophrenia [33].

Additionally, ambroxol (originally a mucolytic drug, with
recent evidence as sodium channel blocker with anti-pain
properties [34]) and betulin (a triterpene compound from the
bark of the birch tree, with evidence for anxiolytic effects
[35]) were identified using the smaller list of biomarkers that
are predictive in all in Step 4. Furthermore, ozagrel (an
antiplatelet agent working as a thromboxane A2 synthesis
inhibitor) was identified using the biomarkers that are pre-
dictive in males, and flecainide (an antiarrhythmic agent that
blocks sodium channels) using the biomarkers that are pre-
dictive in females. It is not unprecedented for drugs from
other fields, and natural compounds, to be repurposed for
novel indications, see recent examples for aging [36, 37].

In the latter, the antibiotic minocycline was shown to
enhance longevity and proteostasis in old post-stress
responsive experimental model organisms (Caenorhabditis
elegans). That work provides a geroprotective mechanism
for the beneficial effects of tetracyclines in models of neu-
rodegenerative disease [37].

Step 7: Convergent Functional Evidence

The biomarkers with the best overall CFE across the six
steps were FKBP5 (FK506 Binding Protein 5), DDX6
(DEAD-Box Helicase 6), B2M (Beta-2-Microglobulin),
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LAIR1 (Leukocyte Associated Immunoglobulin Like
Receptor 1), RTN4 (Reticulon 4), and the previously dis-
cussed NUB1 (Table 2). FKBP5, a decreased in expression
biomarker, survived discovery, prioritization, and valida-
tion. It seems to be a better predictor for state in females and
for trait in males, especially personalized by diagnosis.
FKBP5 has independently been described as decreased in
expression in blood in World Trade Center attack survivors
[38] and in a Dutch cohort with post-deployment PTSD
[39], as well as in the postmortem brains from PTSD [40]. It
has been previously well established as a risk gene for stress
disorders by multiple groups, including seminal studies by
Binder, Ressler, and colleagues [41, 42] (Table S2). FKBP5
appearance in our screen is reassuring and serves as a de
facto positive control for our approach. It is also involved in
multiple other psychiatric disorders, consistent with the role
of stress as a trigger or precipitant of illness (Table S3).
There is previous evidence for its modulation in expression
in opposite direction to stress by mood stabilizers
(Table S4), and interestingly, by psychotherapy [43].
DDX6, an increased in expression biomarker, has previous
convergent evidence of being increased in expression in
blood [44] and in amygdala [28] of mice subjected to stress.
It is a strong predictor of state and trait stress across all, by
gender, and by gender and diagnosis. DDX6 has also been
implicated in other neuropsychiatric disorders (alcoholism,
other addictions, depression, schizophrenia), as well as is an
increased in expression blood biomarker for suicide in our
previous studies [7]. LAIR1, a decreased in expression
biomarker, survived discovery, prioritization, and valida-
tion. It has previous convergent evidence from human stu-
dies of being decreased in expression in blood in PTSD
related to childhood trauma [45] and to interpersonal trauma
in females [11]. It is a strong predictor of state stress in
females and of trait stress across all and in males. LAIR1 is
also a decreased in expression blood biomarker for suicide
in our previous studies [7]. RTN4, an increased in expres-
sion biomarker, has previous convergent evidence of being
increased in the nucleus accumbens (NAC) in social isola-
tion in humans [10] and in blood in PTSD [46, 47, 45]. It is
decreased in expression in blood by treatment with the
nutraceutical omega-3 fatty acid DHA in stressed female
mice in independent studies from our group [29], as well as
by valproate in the brain of mice [48]. RTN4 is a predictor
of trait future hospitalizations with stress in all, as well as
separately in males and females. RTN4 has also been
implicated in bipolar disorder, alcoholism, and pain, as well
as is an increased in expression suicide blood biomarker in
our studies [7]. B2M, an increased in expression biomarker,
has previous convergent evidence of being increased in the
NAC in social isolation in humans [10], and it is decreased
in expression in NAC by treatment with the nutraceutical
omega-3 fatty acid DHA in stressed female mice in

independent studies from our group [29]. It is a strong
predictor of state stress in females with psychotic disorders
and of future hospitalizations with stress in both genders.
B2M has also been implicated in other neuropsychiatric
disorders (alcoholism, autism, depression, eating disorders,
pain, as well as aging and suicide), possibly mediating the
effects of stress in those disorders.

Discussion

Biomarkers are emerging as important tools in disorders
where subjective self-report of an individual and/or clinical
impression of a healthcare professional are not always
reliable. Recent work by our group has identified blood
gene expression biomarkers that track suicidality using
powerful longitudinal within-subject designs, validated
them in suicide completers, and tested them in independent
cohorts demonstrating their ability to predict state (suicidal
ideation) and to predict trait (future hospitalizations for
suicidality) [5, 2, 6, 49]. Similar to suicidality, psycholo-
gical stress is a subjective feeling, with objective roots. It
may reflect past or current traumatic events, their adverse
consequences, and compensatory mechanisms. Metabolic
and hormonal changes may be an informative but incom-
plete window into the underlying biology [50].

We present work describing a powerful longitudinal
within-subject design [4–7, 49, 51, 52] in individuals to
discover blood gene expression changes between self-
reported low stress and high stress states. The longitudinal
within-subject design is relatively novel in the field and has
shown power with very small Ns [4–7, 49, 51, 52], as also
illustrated and discussed by Snyder and colleagues [53], as
well as by Schork and colleagues [54, 55]. Human studies,
particularly genetic ones that use a case–control design, are
susceptible to the issue of being underpowered. We esti-
mate, based on our previous body of work in genetics and
gene expression, that gene expression studies, by integrat-
ing the effects of many SNPs and environment, are up to
three orders of magnitude more powerful than genetic stu-
dies. We also estimate based on previous work that a
within-subject design is up to three orders of magnitude
more powerful than a case–control design. In toto, our
approach may be up to 6 orders of magnitude more pow-
erful than a genetic case-control design (GWAS), hence a
cohort of ≈101 for within-subject discovery may be powered
to the equivalent of a GWAS with ≈106 subjects. In fact,
recent results described for a large GWAS of PTSD in
veterans carried out by Stein, Gelernter and colleagues [56]
implicate the genes CAMKV, KANSL1, possibly CRHR1,
and TCF4 (as discussed in Duncan et al. 2018 [57]). Three
of these genes (KANSL1, CRHR1, and TCF4) have func-
tional evidence for tracking stress in our within-subject
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discovery (Step 1), passing our preset threshold (see Sup-
plementary Information- Complete Data and Analyses), and
being carried forward into prioritization (Step 2) and vali-
dation (Step 3). CRHR1 was also nominally significant after
validation. This convergence of independent findings using
independent approaches in independent populations is
reassuring. We believe that, because: (1) we are using a
within-subject design for discovery, analyzing gene
expression, which is closer to the phenotype, (2) are using a
CFG to prioritize findings, integrating our data with other
lines of evidence in the field (from human and animal model
studies), (3) are validating our biomarkers in a clinically
severe population, and (4) are testing them for both state
and trait predictive ability in independent cohorts, we are
getting reasonably robust and reproducible results for the
field to follow-up on. It has to be noted that our cohort sizes
are comparable to our published gene expression studies in
suicide, which had a similar design, and were successful in
identifying biomarkers that were predictive [4–7] and
independently discovered and/or validated by other inves-
tigators [52, 58–62].

Some of these candidate gene expression biomarkers are
increased in expression in high stress states (being putative
risk genes), and others are decreased in expression (being
putative protective/resilience genes). We cannot readily dif-
ferentiate with our observational studies which of them are a
reflection of damage and which are compensatory mechan-
isms. However, given the fact that these biomarkers are dis-
covered in Step 1 by tracking present/state changes in the
perception of stress and not past/trait exposure, they are more
likely a reflection of pathogenesis rather than adaptation.

Our systematic approach led to the identification of
objective predictive biomarkers for stress, state, and trait.
We present evidence for universal biomarkers for stress, as
well as show evidence that personalization by gender and
diagnosis enhances precision, going from AUCs >60% to
AUCs >80%. Earlier studies in mice by us [28, 29] and by
Yehuda and colleagues [44] had indicated as well profound
sex differences in brain/blood gene expression patterns in
stress. More than half of the top predictive markers we have
identified overlap with markers previously identified by us
in suicide, and the majority of markers have evidence in
other psychiatric disorders, underlying the toxic impact of
stress on mental health. These biomarkers may permit novel
patient stratifications for treatments, such as the possible use
of lithium in patients with changes in TL, FKBP5, OAS1,
SNCA, and STX11, as well as the use of omega-3 fatty
acids in patients with changes in TL, RTN4, SNCA, and
B2M (Table S4). The biomarker gene expression signatures
also open the door to drug repurposing approaches,
including other nutraceuticals such as folate, already used in
depression [63] and schizophrenia [64], both of which are

disorders eminently susceptible to stress, and betulin, which
also has other metabolic and cardiovascular health benefits
[65]. Nutraceuticals are particularly amenable to use in
preventive population-level approaches. In conclusion, our
studies identified new biological underpinnings of psycho-
logical stress and provide important leads toward novel
diagnostics and targeted therapeutics for devastating stress–
related disorders, such as PTSD.
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